
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CHAPTER 6: SYSTEMS OF PARTICLES.
Dynamics of a RIGID BODY

Tipler / Mosca: chapters 9 and 10
Ohanian: chapters 12 and 13

Aritz Leonardo
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What is a RIGID BODY?

When a system of particles maintains constant (unchanged) the distance among all its particles, is said
to be a rigid solid. (Of course such a solid does not exist, there is always deformation!)
But how will it move? are we able to describe its motion?
Remember that a RIGID BODY (RB) is a particular type of a PARTICLE SYSTEM. This means:
F⃗ext = Ma⃗CM is valid and applicable.
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MOTION OF A RIGID BODY
▶ A rigid body can simultaneously have two kinds of motion: it can change its position in space

(TRANSLATION), and it can change its orientation in space (ROTATION).
▶ In the general case of motion of a rigid body, the axis of rotation can have any direction and can

also change its direction. To describe such complicated motion, it is convenient to separate the
rotation into three components along three perpendicular axes but...

DON’T WORRY! we will never deal with the general case of rotation. All our rigid bodies will simply
rotate about a fixed axis easily detectable which will be perpendicular to the paper.

http://www.physics-chemistry- interactive-flash-animation.com/mechanics_forces_gravitation_energy_interactive/trajectory_center_mass_gravity.htm

http://www.physics-chemistry-interactive-flash-animation.com/mechanics_forces_gravitation_energy_interactive/trajectory_center_mass_gravity.htm
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ROTATION ABOUT A FIXED AXE

ϕ(t) = s(t)
R

⟨ω⟩ = ∆ϕ

∆t → ω =
dϕ
dt

⟨α⟩ = ∆ω

∆t → α =
dω
dt

f = ω

2π
T =

1

f

s(t) = ϕ(t)R
ds
dt =

dϕ
dt R

v = ωR
dv
dt =

dω
dt R

aT = αR

aC = v2
R
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KINETIC ENERGY OF A MOVING RIGID BODY

Remember ... MOVEMENT = TRANSLATION + ROTATION (fixed axis) The total kinetic energy of
a rotating rigid body is simply the sum of the individual kinetic energies of all the particles.

Ek =
1

2
Mv2CM+ E′

k energy of all the particles w.r.t. rotation axis

E
′
k =

1

2
m1v′21 +

1

2
m2v′22 +

1

2
m3v′23 + · · ·

In a rigid body rotating about a given axis, all the particles move with the same angular velocity ω
along circular paths:

v′1 = R1ω v′2 = R2ω v′3 = R3ω · · ·

E
′
k =

1

2
m1R2

1ω
2 +

1

2
m2R2

2ω +
1

2
m3R2

3ω + · · ·

E
′
k =

1

2
Iω2

I ≡ m1R2
1 + m2R2

2 + m3R2
3 + · · · MOMENT OF INERTIA

The moment of inertia is a measure of the resistance that a body offers to changes in its rotational
motion.
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MOMENT OF INERTIA EXAMPLE: discrete mass
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MOMENT OF INERTIA EXAMPLE: continuous mass
Consider a macroscopic solid body with its mass distributed throughout a volume. We can calculate
the moment of inertia by subdividing the body into small mass elements and adding each contribution.
In the limit ∆mi → 0, this approximation becomes exact, and the sum becomes an integral.

I =
n∑

i=1

miR2
i ⇒ I =

∫
V

R2dm

Rod:
a) b)

Disk:

λ =
M
L =

dm
dx

a) I =
∫ L/2

−L/2
x2λdx =

1

12
ML2

b) I =
∫ L

0

x2λdx =
1

3
ML2

σ =
M
πR2

0

=
dm

2πRdR

I =
∫ R0

0

R2σ2πRdR =
1

2
MR2

0



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PARALLEL-AXIS THEOREM: Steiner
Calculated moments of inertia table:

Without prove we state the parallel-axis theorem
that relates the moment of inertia ICM about an
axis through the CM to any other moment of
inertia I about a parallel axis.

I = ICM + Md2
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ANGULAR MOMENTUM OF A RIGID BODY
In the previous chapter we have defined the total angular momentum of a system and its relation with
an observer placed at the CM:

L⃗syst =
∑

i
mi⃗ri × v⃗i ⇒ L⃗syst = M⃗rCM × v⃗CM + L⃗′

syst (L⃗′
sist =

∑
i

mi⃗r′i × v⃗′i )

System = RIGID BODY = RB

|⃗L′
RB| = |⃗L′

1|+ |⃗L′
2| = m1r′1v′1 sin 90 + m2r′2v′2 sin 90

In a rigid body: v′1 = ωr′1 and v′2 = ωr′2
|⃗L′

RB| = m1r′21 ω + m2r′22 ω = (m1r′21 + m2r′22 )︸ ︷︷ ︸
I≡moment of inertia

ω

L⃗′
RB = Iω⃗



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DYNAMICS OF A RIGID BODY: EQUATION OF MOTION
We arrive at the main equations of motions which are useful to describe the movement of the RB. For
particle systems we demonstrated that the total torque on a system (τ⃗) due to external forces was
equal to the rate of change of angular momentum, of course it will hold for RB:

d⃗L′RB
dt = τ⃗ ′

RB external forces only! (
∑

i τ⃗i = τ⃗ ′
RB = 0 → L⃗′ = constant)

dL⃗′
RB

dt =
d
dt (Iω⃗) = I dω⃗

dt = Iα⃗ = τ⃗ ′
RB

a) τ⃗ ′
RB = Iα⃗

b) F⃗RB
ext = Ma⃗CM
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CONSERVATION OF THE ANGULAR MOMENTUM
Suppose there are no external forces and thus the external torque is zero. So...

L⃗ = constant = Iω⃗
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WORK AND ENERGY OF THE RIGID BODY
We again recover an observation made for the particle system:

Wtotal
external + Wtotal

internal = Esyst
k,B − Esyst

k,A
By the definition all particles within a rigid body must keep their mutual distances constant, so this
implies ⇒ Wtotal

internal = 0

Wtotal
external = Esyst

k,B − Esyst
k,A

In other words, if the external forces acting upon our RB are conservative (as gravity, spring ...) the
Energy will be conserved and we can write EA = EB

Example: A cube, an sphere, a cylinder and ring of equal radius and mass are thrown downhill from a
height h. What will be the order of arrival?

vcube
CM =

√
2gh vsphere

CM =
√

10
7

gh vcylinder
CM =

√
4
3
gh vring

CM =
√

gh


