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Coulomb’s law

The magnitude of the electric force that a particle exerts on another particle is
directly proportional to the product of their charges and inversely proportional
to the square of the distance between them. The direction of the force is along

the line joining the particles.
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This equation applies to particles (electrons and protons) and also to any small
charged bodies, provided that the sizes of these bodies are much less than the
distance between them: such bodies are called point charges.



Coulomb’s law 1l
When there are multiple charges, the superposition pr|nC|p|e applles Total
force over charge 0 exerted by all the other is: Fy = Fio+ Fao + .

@

Y

=Fip+ Fy+ Fy

The hydrogen atom: m. = 9.1 x 107 3'kg, r=0.53 x 10~ m
ge=—1.6 x107°C

Exercises 1, 3, 4 and 17



Electric field

To discover the field at a given position, take a (virtual) point charge g (a “test
charge”) and place it at that position. The charge g will then feel an electric
force F: The electric field E is defined as the force F divided by the magnitude
of the charge g. In other words, the electric field is simply the force per unit
positive charge.

Exercises 21, 22



Lines of Electric Field

The electric field can be represented graphically by drawing, at any given point
of space, a vector whose magnitude and direction are those of the electric field
at that point.
Alternatively, the electric field can be represented graphically by field lines:

» At any given point, this lines are drawn tangent to the electric field.

» The density of the lines is directly proportionalto the magnitude of the
field.

» We begin each line on a positive point and end on a negative point charge.
» Field lines never intersec.

> They are NOT trajectories that a charged particle would follow if left at
rest a certain point!



Lines of Electric Field Il
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Electric Field Il: Macroscopic charged bodies, continuous charge

distributions.
In a microscopic scale, electric charge is quantized. However, there are often
situations in which many charges are so closed together that they can be
thought of as continuously distributed. In both cases, it is usually easy to find
a volume element V that is large enough to contain a multitude of individual
charges yet is small enough that replacing V with a differential dV and using
calculus introduces negligible error. The charge density concept is the key
ingredient to jump from discrete to continuous configurations.
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Electric Field II: continuous charge distributions. EXAMPLES

1) A charge Q is uniformly distributed on a straight-line segment of length L:
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From the figure we can see that x = ytanf so dx=y

E, kX L[
= y—
v ¥ 0,

Show that E, = %(cos 62 — cosf:)

cosfdf = E(sin 02 —sinf,) = k—Q(sin 02 —sin61)
y Ly

A=Q/L — dg = A\dx

- kdg  k\dx
Bl =5 = =
dE = — dEi + dE}j
kAdx y

dE, =|dE| cos§ =

rZ r

(where: cos 0 = { and r=+/x2+y?)

X=X X2
Ey:/ dEy:k)\y/ %(

=X1 X1
do _
g Y= rcosf




Electric Field II: continuous charge distributions. EXAMPLES

2) E due to an infinite line charge.
A line charge may be considered infinite if for any field point of interest P

x1 — —o0 and x2 — 400 or 01 — —7/2 and O — +7/2
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3) Electric field on the axis of a finite line charge
X1 = —%L and X2 = %L SO 01 = —92
I We recover result 1) and substitute the particular values.
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Electric Field II: continuous charge distributions. EXAMPLES

Exercise 1: Calculate the electric field at point P of the picture

Exercise 2: Calculate the electric field at point P of the picture
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Electric Field II: continuous charge distributions. EXAMPLES

4) E on the axis of a charged ring
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Coordinate systems

cc
r=/x2+y?+ 2
V4 z
f = arccos —————— = arccos -
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@ = arctan 4
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x = rsin 6 cos ¢
y=rsinfsinp

z=rcos0



Gauss's law

A closed surface is one that divides the universe into two distinct regions, the
region inside the surface and the region outside the surface. FLUX: Is to count
the net number of lines OUT of the surface. Count +1 if the line penetrates
from inside and -1 when it penetrates from the outside.
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The net number of lines out of any surface enclosing the charges is
proportional to the net charge enclosed by the surface. This rule is a qualitative

statement of Gauss's law



Gauss's law

The mathematical quantity that corresponds to the number of field lines pene
trating a surface is called the electric flux ¢.
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Gauss's law is valid for all surfaces and all charge distributions. For charge
distributions that have high degrees of symmetry, it can be used to calculate
the electric field! Check the following examples



Gauss's law

Example 1: If E = 9xi N/C calculate the net flux out of the cube of side a

Z]
¢:9a/ i.dAi+9M+9/ i (dA)]
x=a x=0 a
+9/ 0iA= A)j+9M+9M
(9] J 7=0 z=a Z=a

¥ :93/ dA = 9a® Wb # OExists net charge inside the cube!

Example 2: An electric field is E = (200N/C)k in the region z > 0 and

E = (—200N/ )k in the region z < 0. a) What is the net outward flux through
the entire closed cylindrical surface of the picture? b) What is the net charge
inside the closed surface? (The Cylinder has R=5cm and L=20cm)

Gright = Evight - kmR? = 200k - kw0.05> = 1.57Wb
G = Eier - (—k)TR® = 200(—k)(—k)70.05% = 1.57Wb
i Qcurved = 0
) Pnet = Pright + Pleft + Peurved = 3.14Wb

Quside = €opner = (8.85 x 107'2C?/Nm?)(3.14 x
Nm?/C) =2.78 x 10~ C



Gauss's law: A way to calculate electric fields

Given a highly symmetrical charge distribution, the electric field can be
calculated more easily using Gauss’s law than it can be using Coulomb’s law.
We first find an imaginary closed surface, called a Gaussian surface. This
surface is chosen so that on each of its pieces E is either 0, perpendicular to n,
or parallel to n with E constant. Then the flux through each piece equals E,A
and Gauss's law is used to relate E to the charges inside the closed surface.

Example 1: The infinite line charge revisited. So easy!
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Gauss's law: A way to calculate electric fields

Example 2: The infinite charged plan

2nko

€

¢net=755. hdA =
S

Qinside

€0

E(—i)(—i)dA + /

+W:2E dA = 2EA

2EA

_ Qinside _

€0

oA
=

€0

E is independent of the distance!
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Example 3: The capacitor. Two planes in front of each other with opposite o.
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Gauss's law: A way to calculate electric fields
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Electrostatic energy (U)

Imagine there is a fixed charge +Q at a given position and | want to bring a
second charge +q from very far away (from oo) up to a distance R close to it.
The question is: How much energy do | have to spend? (imagine you travel

radially)
R . R . oo
WAL:/ FAL'dF:—/ Fe/'dF:/ Fe - df =
o] [} R
* q1q2 qq2 [Cdr _ quq2 (—1\T _ qiq2
/R e r? r dmeo Jp P 4dmeo ( r >R 47r50R[ ]

g1 >0 and g2>0 or g1 <0 and g2<0=U>0
g1 >0 and g2<0 or g1<0 and g2>0=U<0

Although we have asked to travel radially, the result is completely general as
the electric force is conservative. In other words, the result of the integral is
independent of the path followed only depending on the initial and final points.

Imagine you want to gather N charges close to each other, how much energy
1N _aig
would you spend? U= 3> 4“5”1_




Electrostatic potential (V)

In the same way we introduced earlier the concept of electric field, we are now
going to arrive at the definition of the electrostatic potential by asking
ourselves, what would be the energy cost PER CHARGE UNIT, when we bring

our test-charge g up to a point “p” which is at a distance R from Q. (i.e.
approximate our virtual +1C up to a distance R)

v=Y-_ 9

7~ IneoR J/C=volt

Note that “p" can be any point of the space, there are no restrictions, so we
say that the potential at point p produced by Q is ...(see above)

W

If there are multiple point charges producing a potential at a point “p" we have
to add each contribution:

Q1+Qz

471'60[‘1 47reor2

P




Electrostatic potential (V)
So far so good, we have defined the electrostatic potential V at "p” but note
that the expression is ONLY valid when it is produced by point charges! Let's
generalize this definition.

Imagine we want to move our virtual +1C from point a to point b, the
potential difference will be the energy cost per unit charge:

b P b
g:f/ Ed/:f/ Edl=AV=V,—-V,
q a q a

We may have a very difficult charge distribution, but if by luck, someone
provides me with the electric field (E) that this distribution produces
everywhere in space, | can integrate it and automatically know the electrostatic

potential V. The opposite is also true!

E=-vv=-——i- ==k

If the charge distribution originating the field has spherical or cylindrical
symmetry it is more convenient to use the gradient in those coordinates:

dv.

E=-VV=—""¢




Electrostatic potential (V): Charge distributions

As we have done before, we can divide the charge distribution into differential
pieces (dq) and add each contribution at the point of interest:

V:/@
r

Example:

dq

........... % T— /Q kdq _ / dg— kQ_ _kQ
VZz2 + a2

We can obtain E again but this time from the potential.

d > dY: dVA kQz K okl
- 22+a2)3/2 OK:



Energy of a particle moving through an external field

Imagine a charge g moving through an external field (i.e. not generated by q).
If we ignore gravitational interactions, the energy of the charge will be:
E=E+U=im/ +qV

Exactly in the same way as we did for the gravitational force, electric force is
also conservative thus, the total energy will remain constant:
E, = E; = %mv% +qV1 = %mvg +qV2

The total work performed by the electric field will thus be:
W= AE, = %mvg — %mv% =q(Vi — V)

Example: Imagine that the ring of the previous slide has a radius of 4cm and
carries a uniform charge of 8nC. A small particle of mass m = 6 mg and charge
go = 5 nC is placed at z= 3 cm and released. Find the speed of the particle
when it is at a great distance from the ring.

E=kte= E* + U™ = B2 4 UP* = 04 o V(3) = E, + qoMeoT

kQ = Vpuk = 1.55 m/s

L2
1, = go—tQ
2Mbuk = 4 1/0.032+22



Electrostatic potential (V): Equipotential Surfaces

V = constant

An equipotential surface is a fictitious surface that joins all the points at equal
potential. In other words, if | move following one of those surfaces the value of
the potential keeps unchanged.
0=dV=E-di=ELd
Electric field lines must be perpendicular to equipotential surfaces
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